The purpose of this numerical investigation is to study the micro-jet impingement heat transfer characteristics and hydromechanics in a 3-D, actual-shaped turbine vane geometry. No concession is made on either the skewness or curvature profile of the airfoil in the streamwise direction, nor to the lean, airfoil twist or tapering of the vane in the spanwise direction. The problem on hand consists of a constant property flow of air via an array of 42 round micro jets impinging onto the inner surface of the airfoil. For simplicity, validation and better understanding of the nature of impingement heat transfer, the airfoil surfaces are provided with a constant temperature boundary condition. Validation is performed against existing numerical results on a simplified model with no spanwise tapering or twisting. The modeled volume spans a total of 12D and consists of three rows of jets; each row contains 14 inline jets. Governing equations are solved using a finite volume method in FLUENT. Effects of jet inclination (+45° and −45° inclinations) and decrease in nozzle diameter (0.51, 0.25 and 0.125 mm) are studied. Inclination of −45° produced enhanced mixing and secondary peaks with marginal decrease in stagnation values. The effect of reducing the diameter of the jets yielded positive results; the tapering effect too enhanced the local heat transfer values, which is attributed to the increase in local velocities at jet exit.

This content is only available via PDF.
You do not currently have access to this content.