Significant interest exists in the military and commercial aerospace industry to be able to better predict and improve the durability of gas turbine jet engines that are operating in hostile desert environments, specifically, jet engines that see significant inlet sand or ash ingestion. This paper describes the development of a mixed CFD-empirical software tool that allows a detailed analysis of the kinematic and impact behavior of sand and other particulates in the near-field of turbomachinery blades and impellers. The tool employs a commercially available CFD solver to calculate the machine’s transient flow field and then uses the output to determine a set of non-dimensional coefficients in a set of empirical functions to predict the statistical probability of particles impacting on rotating or stationary surfaces. Based on this tool’s output information, improved inlet air filtering techniques, optimized engine maintenance practices, and component designs can be realized. To determine the empirical coefficient and to validate the method, PIV testing was performed on an airfoil in a wind tunnel, and then particle injection into a simple rotating impeller was tested on SwRI’s high-speed compressor test rig. Results from these tests allowed optimizing of the model to reflect rotating machinery particle impact behavior more accurately.
Skip Nav Destination
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
June 6–10, 2011
Vancouver, British Columbia, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5464-8
PROCEEDINGS PAPER
Particle Transport Analysis of Sand Ingestion in Gas Turbine Engines
Klaus Brun,
Klaus Brun
Southwest Research Institute®, San Antonio, TX
Search for other works by this author on:
Marybeth Nored,
Marybeth Nored
Southwest Research Institute®, San Antonio, TX
Search for other works by this author on:
Rainer Kurz
Rainer Kurz
Solar Turbines, Inc., San Diego, CA
Search for other works by this author on:
Klaus Brun
Southwest Research Institute®, San Antonio, TX
Marybeth Nored
Southwest Research Institute®, San Antonio, TX
Rainer Kurz
Solar Turbines, Inc., San Diego, CA
Paper No:
GT2011-45057, pp. 947-957; 11 pages
Published Online:
May 3, 2012
Citation
Brun, K, Nored, M, & Kurz, R. "Particle Transport Analysis of Sand Ingestion in Gas Turbine Engines." Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 4: Cycle Innovations; Fans and Blowers; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine; Oil and Gas Applications. Vancouver, British Columbia, Canada. June 6–10, 2011. pp. 947-957. ASME. https://doi.org/10.1115/GT2011-45057
Download citation file:
46
Views
Related Proceedings Papers
Related Articles
Particle Transport Analysis of Sand Ingestion in Gas Turbine Engines
J. Eng. Gas Turbines Power (January,2012)
Compressor Erosion and Performance Deterioration
J. Fluids Eng (September,1987)
Related Chapters
Review of Basic Principles
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
On the Exact Analysis of Non-Coherent Fault Trees: The ASTRA Package (PSAM-0285)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Mechanical Construction
Turbo/Supercharger Compressors and Turbines for Aircraft Propulsion in WWII: Theory, History and Practice—Guidance from the Past for Modern Engineers and Students