Obtaining the right pitch in turbomachinery blading is crucial to efficient and successful operations. Engineers adjust the rotor’s pitch angle to control the production or absorption of power. Even for low speed fans this is a promising tool. This paper focuses on a low speed axial fan’s inception and the evolution of the flow instabilities in the tip region which drive the stall onset. The authors conducted an experimental study to investigate the inception patterns of rotating stall evolution at different rotor blade stagger-angle settings with the aim of extending the stable operating range. The authors drove the fan to stall at the design stagger-angle setting and then operated the variable pitch mechanism in order to recover the unstable operation. They measured pressure fluctuations in the tip region of the low-speed axial-flow fan using a variable pitch in motion mechanism, with flush mounted probes. The authors studied the flow mechanisms for spike and modal stall inceptions in this low-speed axial-flow fan which showed relatively small tip clearance. The authors cross-correlated the pressure fluctuations and analysed the cross-spectra in order to clarify blade pitch, end-wall flow, and tip-leakage flow influences on stall inception during the transient at the rotor blades’ different stagger-angle settings. The authors observed a rotating instability near the maximum pressure-rise point at both design and low stagger-angle settings. The stall inception patterns were a spike type at the design stagger-angle setting and a modal type at the low stagger-angle setting as a result of the interaction between the incoming flow, tip-leakage flow and end-wall backflow.
Skip Nav Destination
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
June 6–10, 2011
Vancouver, British Columbia, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5464-8
PROCEEDINGS PAPER
Stall Inception, Evolution and Control in a Low Speed Axial Fan With Variable Pitch in Motion
Stefano Bianchi,
Stefano Bianchi
Sapienza University of Rome, Rome, Italy
Search for other works by this author on:
Alessandro Corsini,
Alessandro Corsini
Sapienza University of Rome, Rome, Italy
Search for other works by this author on:
Luca Mazzucca,
Luca Mazzucca
Sapienza University of Rome, Rome, Italy
Search for other works by this author on:
Lucilla Monteleone,
Lucilla Monteleone
Sapienza University of Rome, Rome, Italy
Search for other works by this author on:
Anthony G. Sheard
Anthony G. Sheard
Fla¨kt Woods Limited, Colchester, UK
Search for other works by this author on:
Stefano Bianchi
Sapienza University of Rome, Rome, Italy
Alessandro Corsini
Sapienza University of Rome, Rome, Italy
Luca Mazzucca
Sapienza University of Rome, Rome, Italy
Lucilla Monteleone
Sapienza University of Rome, Rome, Italy
Anthony G. Sheard
Fla¨kt Woods Limited, Colchester, UK
Paper No:
GT2011-45725, pp. 445-456; 12 pages
Published Online:
May 3, 2012
Citation
Bianchi, S, Corsini, A, Mazzucca, L, Monteleone, L, & Sheard, AG. "Stall Inception, Evolution and Control in a Low Speed Axial Fan With Variable Pitch in Motion." Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 4: Cycle Innovations; Fans and Blowers; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine; Oil and Gas Applications. Vancouver, British Columbia, Canada. June 6–10, 2011. pp. 445-456. ASME. https://doi.org/10.1115/GT2011-45725
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
Stall Inception, Evolution and Control in a Low Speed Axial Fan With Variable Pitch in Motion
J. Eng. Gas Turbines Power (April,2012)
Stall Inception Mechanism in an Axial Flow Fan Under Clean and Distorted Inflows
J. Fluids Eng (December,2010)
Experimental Analysis on Tip Leakage and Wake Flow in an Axial Flow Fan According to Flow Rates
J. Fluids Eng (March,2005)
Related Chapters
Aerodynamic Performance Analysis
Axial-Flow Compressors
Introduction
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
Introduction
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis