In spite of low circumferential Mach number the sound of isolated centrifugal fan impellers is sometimes dominated by distinctive tones at blade passing frequency (BPF) and integer multiples. This paper reports on an experimental and numerical investigation intended to unveil the tone generating mechanism. The sound spectra from three impellers operating at a large range of speed were measured and decomposed into Strouhal and Helmholtz number dependent functions. This led to the preliminary conclusion that the BPF related tones are exclusively flow-induced. Based on hot-wire and blade pressure fluctuation measurements and a subsequent correlation analysis, coherent flow structures different from the one associated with the principal azimuthal flow pattern due to the blades were detected. Eventually, numerical three-dimensional unsteady flow simulation and experimental flow visualization revealed an inlet vortex. It takes on a helical form, with the vortex core slowly varying its position with respect to the impeller center. As the blades cut through that quasi-stationary helical vortex they encounter blade force fluctuations producing the BPF tones. The slow spin of the vortex core and the slow variation of vortex strength were identified as the reason for the amplitude modulation of the BPF tone.

This content is only available via PDF.
You do not currently have access to this content.