A five-hole probe is a proven aerodynamic tool for the accurate measurement of flow fields, but is traditionally difficult to calibrate manually in an acceptable range of pitch and yaw angles. With advancements in computer technology, it is possible to improve the calibration process that is made up of tedious and repeating angular pitch and yaw angle movements. This paper proposes a way to increase the accuracy of measurements. The proposed approach uses computer automation, a mechanical pressure scanner, and precision rotary tables to significantly reduce the amount of time required to complete the calibration sequence. A five-hole probe is fastened to a precision calibration mechanism in a wind tunnel test section. This mechanism varied the pitch and yaw angle of the probe accurately via two computer controlled rotary tables. This approach allowed for a much greater degree of accuracy and a way to increase the number of data points taken, better defining the non-linear portions of the calibration maps. The scanivalve system minimized the number of transducers required from seven to one. While it takes more time than having multiple transducers, this approach lowered the overall equipment costs and helped to reduce measurement errors. The data acquisition device provides an interface between the rotary table stepper controllers, the scanivalve controller, and the transducer. A LabVIEW interface was then used to control all of the devices, while simultaneously retrieving data from the transducer and turning it into the coefficients needed to make the calibration map. The program allows for a degree of flexibility, allowing the user to choose the range of angles and the degrees between each point.
Skip Nav Destination
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
June 6–10, 2011
Vancouver, British Columbia, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5463-1
PROCEEDINGS PAPER
Sub-Miniature Five-Hole Probe Calibration Using a Time Efficient Pitch and Yaw Mechanism and Accuracy Improvements
Jason Town,
Jason Town
The Pennsylvania State University, University Park, PA
Search for other works by this author on:
Cengiz Camci
Cengiz Camci
The Pennsylvania State University, University Park, PA
Search for other works by this author on:
Jason Town
The Pennsylvania State University, University Park, PA
Cengiz Camci
The Pennsylvania State University, University Park, PA
Paper No:
GT2011-46391, pp. 349-359; 11 pages
Published Online:
May 3, 2012
Citation
Town, J, & Camci, C. "Sub-Miniature Five-Hole Probe Calibration Using a Time Efficient Pitch and Yaw Mechanism and Accuracy Improvements." Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 3: Controls, Diagnostics and Instrumentation; Education; Electric Power; Microturbines and Small Turbomachinery; Solar Brayton and Rankine Cycle. Vancouver, British Columbia, Canada. June 6–10, 2011. pp. 349-359. ASME. https://doi.org/10.1115/GT2011-46391
Download citation file:
23
Views
0
Citations
Related Proceedings Papers
Related Articles
Accelerating the Calibration of Multihole Pressure Probes by Applying Advanced Computational Methods
J. Turbomach (July,2005)
The Compressible Calibration of Miniature Multi-Hole Probes
J. Fluids Eng (March,2001)
On Fast-Response Probes: Part 2—Aerodynamic Probe Design Studies
J. Turbomach (October,1995)
Related Chapters
A Study on the Application of the Vehicle's Intelligent Weighing System
International Conference on Information Technology and Computer Science, 3rd (ITCS 2011)
Multiobjective Decision-Making Using Physical Programming
Decision Making in Engineering Design
Application Computer Technology in the Engineering Supervision
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)