A 3-step global reaction mechanism for a methane-air mixture is optimized against a detailed reference mechanism for perfectly stirred reactor (PSR) calculations. The global mechanism consists of three reactions corresponding to the fuel oxidation into CO and H2O, and the CO–CO2 equilibrium reaction. To ensure good agreement for rich conditions, correction functions that are dependent on the local equivalence ratio are introduced into the global mechanism. In a comparison of the optimized 3-step global reaction mechanism with the reference detailed reaction mechanism, GRI Mech 3.0, the results show that the gas temperature and emissions are reasonably well predicted for lean and rich conditions. The optimized 3-step global reaction scheme is adapted in the Computational Fluid Dynamics (CFD) analysis of a swirl-stabilized syngas burner, designed by Siemens Industrial Turbomachinery (SIT syngas burner) for gas turbines. The burner consists of a main premixed flame, a partially premixed pilot flame and a confined rich premixed lean flame which produces radicals that support both the pilot and the main flame. The CFD results are compared with experimental results obtained in an atmospheric version of the burner test rig at Lund University. Both steady-state Reynolds Averaged Navier Stokes (RANS) and hybrid Unsteady RANS/Large Eddy Simulation (URANS/LES) results were computed. The CFD results with the 3-step global reaction mechanism show good agreement with the experimental data on gas analysis and flame visualization, while the Westbrook Dryer 2-step (WD2) [2] and Meredith et al. [3] 3-step global reaction mechanisms failed in their predictions of the CO emissions downstream in the burner.
Skip Nav Destination
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
June 6–10, 2011
Vancouver, British Columbia, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5462-4
PROCEEDINGS PAPER
Optimized Global Mechanisms for CFD Analysis of Swirl-Stabilized Syngas Burner for Gas Turbines
Abdallah Abou-Taouk,
Abdallah Abou-Taouk
Chalmers University of Technology, Gothenburg, Sweden
Search for other works by this author on:
Lars-Erik Eriksson
Lars-Erik Eriksson
Chalmers University of Technology, Gothenburg, Sweden
Search for other works by this author on:
Abdallah Abou-Taouk
Chalmers University of Technology, Gothenburg, Sweden
Lars-Erik Eriksson
Chalmers University of Technology, Gothenburg, Sweden
Paper No:
GT2011-45853, pp. 765-779; 15 pages
Published Online:
May 3, 2012
Citation
Abou-Taouk, A, & Eriksson, L. "Optimized Global Mechanisms for CFD Analysis of Swirl-Stabilized Syngas Burner for Gas Turbines." Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 2: Combustion, Fuels and Emissions, Parts A and B. Vancouver, British Columbia, Canada. June 6–10, 2011. pp. 765-779. ASME. https://doi.org/10.1115/GT2011-45853
Download citation file:
32
Views
Related Proceedings Papers
Related Articles
Reduced Reaction Mechanisms for Methane and Syngas Combustion in Gas Turbines
J. Eng. Gas Turbines Power (March,2008)
Comparative Study of Two Low C O 2 Emission Power Generation System Options With Natural Gas Reforming
J. Eng. Gas Turbines Power (September,2008)
Development and Application of an Eight-Step Global Mechanism for CFD and CRN Simulations of Lean-Premixed Combustors
J. Eng. Gas Turbines Power (March,2008)
Related Chapters
Introduction
Nanomaterials in Glucose Sensing: Biomedical & Nanomedical Technologies - Concise Monographs
E110opt Fuel Cladding Corrosion under PWR Conditions
Zirconium in the Nuclear Industry: 20th International Symposium
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies