The use of hydrogen as derived fuel for low emission gas turbine is a crucial issue of clean coal technology power plant based on IGCC (Integrated Gasification Combined Cycle) technology. Control of NOx emissions in gas turbines supplied by natural gas is effectively achieved by lean premixed combustion technology; conversely, its application to NOx emission reduction in high hydrogen content fuels is not a reliable practice yet. Since the hydrogen premixed flame is featured by considerably higher flame speed than natural gas, very high air velocity values are required to prevent flash-back phenomena, with obvious negative repercussions on combustor pressure drop. In this context, the characterization of hydrogen lean premixed combustion via experimental and modeling analysis has a special interest for the development of hydrogen low NOx combustors. This paper describes the experimental and numerical investigations carried-out on a lean premixed burner prototype supplied by methane-hydrogen mixture with an hydrogen content up to 100%. The experimental activities were performed with the aim to collect practical data about the effect of the hydrogen content in the fuel on combustion parameters as: air velocity flash-back limit, heat release distribution, NOx emissions. This preliminary data set represents the starting point for a more ambitious project which foresees the upgrading of the hydrogen gas turbine combustor installed by ENEL in Fusina (Italy). The same data will be used also for building a computational fluid dynamic (CFD) model usable for assisting the design of the upgraded combustor. Starting from an existing heavy-duty gas turbine burner, a burner prototype was designed by means of CFD modeling and hot-wire measurements. The geometry of the new premixer was defined in order to control turbulent phenomena that could promote the flame moving-back into the duct, to increase the premixer outlet velocity and to produce a stable central recirculation zone in front of the burner. The burner prototype was then investigated during a test campaign performed at the ENEL’s TAO test facility in Livorno (Italy) which allows combustion test at atmospheric pressure with application of optical diagnostic techniques. In-flame temperature profiles, pollutant emissions and OH* chemiluminescence were measured over a wide range of the main operating parameters for three fuels with different hydrogen content (0, 75% and 100% by vol.). Flame control on burner prototype fired by pure hydrogen was achieved by managing both the premixing degree and the air discharge velocity, affecting the NOx emissions and combustor pressure losses respectively. A CFD model of the above-mentioned combustion test rig was developed with the aim to validate the model prediction capabilities and to help the experimental data analysis. Detailed simulations, performed by a CFD 3-D RANS commercial code, were focused on air/fuel mixing process, temperature field, flame position and NOx emission estimation.
Skip Nav Destination
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
June 6–10, 2011
Vancouver, British Columbia, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5462-4
PROCEEDINGS PAPER
Experimental and Numerical Characterization of Lean Hydrogen Combustion in a Premix Burner Prototype
Iarno Brunetti,
Iarno Brunetti
ENEL Ingegneria ed Innovazione S.p.A., Pisa, Italy
Search for other works by this author on:
Giovanni Riccio,
Giovanni Riccio
University of Florence, Florence, Italy
Search for other works by this author on:
Nicola Rossi,
Nicola Rossi
ENEL Ingegneria ed Innovazione S.p.A., Pisa, Italy
Search for other works by this author on:
Alessandro Cappelletti,
Alessandro Cappelletti
University of Florence, Florence, Italy
Search for other works by this author on:
Lucia Bonelli,
Lucia Bonelli
ENEL Ingegneria ed Innovazione S.p.A., Pisa, Italy
Search for other works by this author on:
Alessandro Marini,
Alessandro Marini
University of Florence, Florence, Italy
Search for other works by this author on:
Enrico Paganini,
Enrico Paganini
ENEL Ingegneria ed Innovazione S.p.A., Pisa, Italy
Search for other works by this author on:
Francesco Martelli
Francesco Martelli
University of Florence, Florence, Italy
Search for other works by this author on:
Iarno Brunetti
ENEL Ingegneria ed Innovazione S.p.A., Pisa, Italy
Giovanni Riccio
University of Florence, Florence, Italy
Nicola Rossi
ENEL Ingegneria ed Innovazione S.p.A., Pisa, Italy
Alessandro Cappelletti
University of Florence, Florence, Italy
Lucia Bonelli
ENEL Ingegneria ed Innovazione S.p.A., Pisa, Italy
Alessandro Marini
University of Florence, Florence, Italy
Enrico Paganini
ENEL Ingegneria ed Innovazione S.p.A., Pisa, Italy
Francesco Martelli
University of Florence, Florence, Italy
Paper No:
GT2011-45623, pp. 601-612; 12 pages
Published Online:
May 3, 2012
Citation
Brunetti, I, Riccio, G, Rossi, N, Cappelletti, A, Bonelli, L, Marini, A, Paganini, E, & Martelli, F. "Experimental and Numerical Characterization of Lean Hydrogen Combustion in a Premix Burner Prototype." Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 2: Combustion, Fuels and Emissions, Parts A and B. Vancouver, British Columbia, Canada. June 6–10, 2011. pp. 601-612. ASME. https://doi.org/10.1115/GT2011-45623
Download citation file:
49
Views
Related Proceedings Papers
Related Articles
Advanced Catalytic Pilot for Low NO x Industrial Gas Turbines
J. Eng. Gas Turbines Power (October,2003)
FLOX ® Combustion at High Pressure With Different Fuel Compositions
J. Eng. Gas Turbines Power (January,2008)
Prediction of Auto-Ignition Temperatures and Delays for Gas Turbine Applications
J. Eng. Gas Turbines Power (February,2016)
Related Chapters
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential