This paper describes an experimental and numerical study of the emission of nitrogen oxides (NOX) from the lean premixed (LPM) combustion of gaseous fuel alternatives to typical pipeline natural gas in a high intensity, single-jet stirred reactor (JSR). In this study, CH4 is mixed with varying levels CO2 and N2. NOX measurements are taken at a nominal combustion temperature of 1800 K, atmospheric pressure, and a reactor residence time of 3 ms. The experimental results show the following trends for NOX emissions as a function of fuel dilution: (1) more NOX is produced per kg of CH4 consumed with the addition of a diluent, (2) the degree of increase in emission index is dependent on the chosen diluent; N2 dilution increases NOX production more effectively than equivalent CO2 dilution. Chemical kinetic modelling suggests that NOX production is less effective for the mixture diluted with CO2 due to both a decrease in N2 concentration and the ability of CO2 to deplete the radicals taking part in NOX formation chemistry. In order to gain insight on flame structure within the JSR, three dimensional computational fluid dynamic (CFD) simulations are carried out for LPM CH4 combustion. A global CH4 combustion mechanism is used to model the chemistry. While it does not predict intermediate radicals, it does predict CH4 and CO oxidation quite well. The CFD model illustrates the flow-field, temperature variation, and flame structure within the JSR. A 3-element chemical reactor network (CRN), including detailed chemistry, is constructed using insight from detailed spatial measurements of the reactor, the results of CFD simulations, and classical fluid dynamic correlations. GRI 3.0 is used in the CRN to model the NOX emissions for all fuel blends. The experimental and modelling results are in good agreement and suggest the underlying chemical kinetic reasons for the trends.
Skip Nav Destination
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
June 6–10, 2011
Vancouver, British Columbia, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5462-4
PROCEEDINGS PAPER
Experimental and Numerical Study of NOX Formation From the Lean Premixed Combustion of CH4 Mixed With CO2 and N2 Available to Purchase
K. Boyd Fackler,
K. Boyd Fackler
University of Washington, Seattle, WA
Search for other works by this author on:
Megan F. Karalus,
Megan F. Karalus
University of Washington, Seattle, WA
Search for other works by this author on:
Igor V. Novosselov,
Igor V. Novosselov
University of Washington, Seattle, WA
Search for other works by this author on:
John C. Kramlich,
John C. Kramlich
University of Washington, Seattle, WA
Search for other works by this author on:
Phillip C. Malte
Phillip C. Malte
University of Washington, Seattle, WA
Search for other works by this author on:
K. Boyd Fackler
University of Washington, Seattle, WA
Megan F. Karalus
University of Washington, Seattle, WA
Igor V. Novosselov
University of Washington, Seattle, WA
John C. Kramlich
University of Washington, Seattle, WA
Phillip C. Malte
University of Washington, Seattle, WA
Paper No:
GT2011-45090, pp. 55-63; 9 pages
Published Online:
May 3, 2012
Citation
Fackler, KB, Karalus, MF, Novosselov, IV, Kramlich, JC, & Malte, PC. "Experimental and Numerical Study of NOX Formation From the Lean Premixed Combustion of CH4 Mixed With CO2 and N2." Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 2: Combustion, Fuels and Emissions, Parts A and B. Vancouver, British Columbia, Canada. June 6–10, 2011. pp. 55-63. ASME. https://doi.org/10.1115/GT2011-45090
Download citation file:
22
Views
Related Articles
Experimental and Numerical Study of NO x Formation From the Lean Premixed Combustion of CH 4 Mixed With CO 2 and N 2
J. Eng. Gas Turbines Power (December,2011)
A High-Fidelity Modeling Tool to Support the Design of Oxy-Combustors for Direct-Fired Supercritical CO 2 Cycles
J. Eng. Gas Turbines Power (January,2021)
Development of a Hydrogen Micro Gas Turbine Combustor: Atmospheric Pressure Testing
J. Eng. Gas Turbines Power (April,2024)
Related Chapters
Numerical Simulation Research on a Fixed Bed Gasifier
International Conference on Information Technology and Management Engineering (ITME 2011)
Conclusions
Clean and Efficient Coal-Fired Power Plants: Development Toward Advanced Technologies
Pipeline Integrity and Security
Continuing and Changing Priorities of the ASME Boiler & Pressure Vessel Codes and Standards