In the world of gas turbine combustion there is always the spectre of thermo-acoustic instability. Over the past few decades there has been significant effort afforded to researching the phenomenon of thermo-acoustics. The results of the research have produced numerous mathematical models and at system level these models have been used to predict and postdict where noise is likely to occur in a given system. The models also allow the combustion system to be numerically tested through the flight or operational envelope to identify areas where instability may occur before testing is carried out, thus reducing the risk of unexpected noise occurring. The weakness of many of these models is that they require, what is known as a flame transfer function. The flame transfer function is normally measured after the combustor has been fully designed and at a high TRL (Technology Readiness Level) so significant investment in time and money are already baked into the design. Remedial action if required can result in a significant loss of time and money in the development of the combustor. This paper describes the design and use of a test rig that allows combustion systems to be tested at much lower TRL. A ‘siren’ rig has been developed and used to identify what particular design changes in either combustor flow field or fuel delivery systems have effects on the thermo-acoustics. The exit boundary of the unit has a representative choked end point. This end point has the ability to be modulated in time, thus forcing the whole system. How the system reacts to the forcing is measured over a range of frequencies. The rig has been successfully used to influence design changes required to avoid combustion driven oscillations within the next generation of aero gas turbine combustors. The rig is not a representation of a complete 360 degree annular combustor system, but of a smaller sector. The objective is to isolate the Fuel Spray Nozzle (FSN) and corresponding combustor sector from acoustic resonances and derive functions expressing the relationship between unsteady heat release rate and unsteady aerodynamics for a range of operating conditions by controlling the modulation of air mass flow rate. Such functions can be used in conjunction with acoustic linear theory to predict wave modes and growth rates in combustor geometries.
Skip Nav Destination
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
June 6–10, 2011
Vancouver, British Columbia, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5462-4
PROCEEDINGS PAPER
Forced Combustion Experiments on Aero Combustors Available to Purchase
Michael Whiteman,
Michael Whiteman
Rolls-Royce plc, Derby, UK
Search for other works by this author on:
Michael A. Macquisten,
Michael A. Macquisten
Rolls-Royce plc, Derby, UK
Search for other works by this author on:
A. John Moran
A. John Moran
Rolls-Royce plc, Derby, UK
Search for other works by this author on:
Nick Pilatis
Rolls-Royce plc, Derby, UK
Michael Whiteman
Rolls-Royce plc, Derby, UK
Paul Madden
Rolls-Royce plc, Derby, UK
Michael A. Macquisten
Rolls-Royce plc, Derby, UK
A. John Moran
Rolls-Royce plc, Derby, UK
Paper No:
GT2011-45235, pp. 237-245; 9 pages
Published Online:
May 3, 2012
Citation
Pilatis, N, Whiteman, M, Madden, P, Macquisten, MA, & Moran, AJ. "Forced Combustion Experiments on Aero Combustors." Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 2: Combustion, Fuels and Emissions, Parts A and B. Vancouver, British Columbia, Canada. June 6–10, 2011. pp. 237-245. ASME. https://doi.org/10.1115/GT2011-45235
Download citation file:
36
Views
Related Proceedings Papers
Related Articles
Acoustic Resonances of an Industrial Gas Turbine Combustion System
J. Eng. Gas Turbines Power (October,2001)
Experimental Study on the Role of Entropy Waves in Low-Frequency Oscillations in a RQL Combustor
J. Eng. Gas Turbines Power (April,2006)
A Test Device for Premixed Gas Turbine Combustion Oscillations
J. Eng. Gas Turbines Power (October,1997)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Alternative Systems
Turbo/Supercharger Compressors and Turbines for Aircraft Propulsion in WWII: Theory, History and Practice—Guidance from the Past for Modern Engineers and Students
Generating Synthetic Electrocardiogram Signals Withcontrolled Temporal and Spectral Characteristics
Intelligent Engineering Systems through Artificial Neural Networks Volume 18