Imaging of OH* or CH* chemiluminescence with intensified cameras is often employed for the determination of heat release in premixed flames. Proportionality is commonly assumed, but in the turbulent case this assumption is not justified. Substantial deviations from proportionality are observed, which are due to turbulence-chemistry interactions. In this study a model based correction method is presented to obtain a better approximation of the spatially resolved heat release rate of lean turbulent flames from OH* measurements. The correction method uses a statistical strain rate model to account for the turbulence influence. The strain rate model is evaluated with time-resolved velocity measurements of the turbulent flow. Additionally, one-dimensional simulations of strained counterflow flames are performed to consider the non-linear effect of turbulence on chemi-luminescence intensities. A detailed reaction mechanism, which includes all relevant chemiluminescence reactions and deactivation processes, is used. The result of the simulations is a lookup table of the ratio between heat release rate and OH* intensity with strain rate as parameter. This lookup table is linked with the statistical strain rate model to obtain a correction factor which accounts for the non-linear relationships between OH* intensity, heat release rate, and strain rate. The factor is then used to correct measured OH* intensities to obtain the local heat release rate. The corrected intensities are compared to heat release distributions which are measured with an alternative method. For all investigated flames in the lean, partially premixed regime the corrected OH* intensities are in very good agreement with the heat release rate distributions of the flames.

This content is only available via PDF.
You do not currently have access to this content.