To address the global fuel challenges of energy security, economic sustainability and climate change the stakeholders of aviation industry are actively pursuing the development and qualification of alternative ‘drop-in’ fuels. New standards will be required to regulate the use of these new fuels, which requires not only fuel specification and rig/engine and flight testing but also an emission life cycle impact assessment of these fuels. This paper reports on emission data measured at various simulated altitudes and engine speeds from a jet engine operated on conventional and alternative aviation fuels. The work was conducted as part of on-going efforts by departments within the Government of Canada to systematically assess regulated as well as non-regulated emissions from the use of alternative aviation fuels. The measurements were performed on an instrumented 1000 N-thrust turbojet engine using a baseline conventional Jet A-1 fuel and a semi-synthetic (50/50) blend with Camelina based Hydroprocessed Renewable Jet (JP8-HRJ8) fuel. Emission results reported here include carbon dioxide, carbon monoxide, nitrogen oxides and particulate matter measured at several simulated altitudes and power settings. In order to ensure that the assessments have a common baseline, relevant engine performance and operability data were also recorded.

This content is only available via PDF.
You do not currently have access to this content.