This paper discusses thrust reversing techniques for a separate exhaust high bypass ratio turbofan engine and its effect on aircraft and engine performance. Cranfield University is developing suitable thrust reverser performance models. These thrust reverser performance models will subsequently be integrated within the TERA (Techno-economic Environmental Risk Analysis) architecture thereby allowing for more detailed and accurate representations of aircraft and engine performance during the landing phase of a typical civil aircraft mission. The turbofan engine chosen for this study was CUTS_TF (Cranfield University Twin Spool Turbofan) which is similar to the CFM56-5B4 engine and the information available in the public domain is used for the engine performance analysis along with the Gas Turbine Performance Software, ‘GasTurb 10’ [1]. The CUTEA (Cranfield University Twin Engine Aircraft) which is similar to the Airbus A320 is used alongside with the engine model for the thrust reverser performance calculations. The aim of this research paper is to investigate the effects on aircraft and engine performance characteristics due to the pivoting door type thrust reverser deployment. The paper will look into the overall engine performance characteristics and how the engine components get affected when the thrust reversers come into operation. This includes the changes into the operating point of fan, booster, HP compressor, HP turbine, LP turbine, bypass nozzle and core nozzle. Also, thrust reverser performance analyses were performed (at aircraft/engine system level) by varying the reverser exit area by ± 5% and its effect on aircraft deceleration rate, deceleration time and landing distances were observed.

This content is only available via PDF.
You do not currently have access to this content.