A URANS solver has been applied to study the effects of a synthetic jet actuator on the laminar boundary layer separation over a flat plate with adverse pressure gradient. The pressure distribution over the flat plate is representative of the suction side of a ultra-high-lift, LP-turbine airfoil. Measurements for several Reynolds numbers, are provided via experimental tests carried out in the framework of the European project TATMo (Turbulence and Transition Modelling for Special Turbomachinery Applications). The actuator device, in the form of a two-dimensional slot, has been conceived in order to obtain jet aerodynamic characteristics suitable for separation control. The study has been carried out using a novel, transition-sensitive, non-linear eddy-viscosity model. It is based on the coupling of an additional transport equation for the so-called laminar kinetic energy (LKE) to a realizable, quadratic eddy-viscosity model that provides an explicit algebraic formulation for the Reynolds stresses. The analysis covers steady as well as unsteady cases characterized by different actuator frequencies. Comparisons between measurements and computations are presented. The suitability of the proposed approach to simulate the time- and phase-averaged effects of a synthetic jet for boundary layer control at typical operating conditions of high-lift LP-turbine blades will be discussed in detail.
Skip Nav Destination
ASME Turbo Expo 2010: Power for Land, Sea, and Air
June 14–18, 2010
Glasgow, UK
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4402-1
PROCEEDINGS PAPER
URANS Predictions of the Effects of Synthetic Jets on the Separated, Transitional Flow Over a Low-Pressure-Turbine-Like Flat Plate
Michele Marconcini,
Michele Marconcini
University of Florence, Firenze, Italy
Search for other works by this author on:
Roberto Pacciani,
Roberto Pacciani
University of Florence, Firenze, Italy
Search for other works by this author on:
Andrea Arnone
Andrea Arnone
University of Florence, Firenze, Italy
Search for other works by this author on:
Michele Marconcini
University of Florence, Firenze, Italy
Roberto Pacciani
University of Florence, Firenze, Italy
Andrea Arnone
University of Florence, Firenze, Italy
Paper No:
GT2010-23297, pp. 2605-2613; 9 pages
Published Online:
December 22, 2010
Citation
Marconcini, M, Pacciani, R, & Arnone, A. "URANS Predictions of the Effects of Synthetic Jets on the Separated, Transitional Flow Over a Low-Pressure-Turbine-Like Flat Plate." Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A, B, and C. Glasgow, UK. June 14–18, 2010. pp. 2605-2613. ASME. https://doi.org/10.1115/GT2010-23297
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model
J. Turbomach (July,2011)
A Correlation-Based Transition Model Using Local Variables—Part II:
Test Cases and Industrial Applications
J. Turbomach (January,0001)
Predicting the Profile Loss of High-Lift Low Pressure Turbines
J. Turbomach (March,2012)
Related Chapters
Introduction
Design and Analysis of Centrifugal Compressors
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)