Implementation of gas foil bearings (GFB) in micro gas turbines relies on physics based computational models anchored to test data. This two-part paper presents test data and analytical results for a test rotor and GFB system operating hot. A companion paper (Part 1) describes a test rotor-GFB system operating hot to 157°C rotor OD temperature, presents measurements of rotor dynamic response and temperatures in the bearings and rotor, and including a cooling gas stream condition to manage the system temperatures. The second part briefs on a thermoelastohydrodynamic (TEHD) model for GFBs performance and presents predictions of the thermal energy transport and forced response, static and dynamic, in the tested gas foil bearing system. The model considers the heat flow from the rotor into the bearing cartridges and also the thermal expansion of the shaft and bearing cartridge and shaft centrifugal growth due to rotation. Predictions show that bearings’ ID temperatures increase linearly with rotor speed and shaft temperature. Large cooling flow rates, in excess of 100 L/min, reduce significantly the temperatures in the bearings and rotor. Predictions, agreeing well with recorded temperatures given in Part 1, also reproduce the radial gradient of temperature between the hot shaft and the bearings ID, largest (37°C/mm) for the strongest cooling stream (150 L/min). The shaft thermal growth, more significant as the temperature grows, reduces the bearings operating clearances and also the minimum film thickness, in particular at the highest rotor speed (30 krpm). A rotor finite element (FE) structural model and GFBs force coefficients from the TEHD model are used to predict the test system critical speeds and damping ratios for operation at increasing shaft temperatures. In general, predictions of the rotor imbalance show good agreement with shaft motion measurements acquired during rotor speed coastdown tests. As the shaft temperature increases, the rotor peak motion amplitudes decrease and the system rigid-mode critical speed increases. The computational tool, benchmarked by the measurements, furthers the application of GFBs in high temperature oil-free rotating machinery.
Skip Nav Destination
ASME Turbo Expo 2010: Power for Land, Sea, and Air
June 14–18, 2010
Glasgow, UK
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4401-4
PROCEEDINGS PAPER
Thermal Management and Rotordynamic Performance of a Hot Rotor-Gas Foil Bearings System: Part 2—Predictions Versus Test Data
Luis San Andre´s,
Luis San Andre´s
Texas A&M University, College Station, TX
Search for other works by this author on:
Tae Ho Kim,
Tae Ho Kim
Korea Institute of Science and Technology, Seoul, Korea
Search for other works by this author on:
Keun Ryu
Keun Ryu
Texas A&M University, College Station, TX
Search for other works by this author on:
Luis San Andre´s
Texas A&M University, College Station, TX
Tae Ho Kim
Korea Institute of Science and Technology, Seoul, Korea
Keun Ryu
Texas A&M University, College Station, TX
Paper No:
GT2010-22983, pp. 263-271; 9 pages
Published Online:
December 22, 2010
Citation
San Andre´s, L, Kim, TH, & Ryu, K. "Thermal Management and Rotordynamic Performance of a Hot Rotor-Gas Foil Bearings System: Part 2—Predictions Versus Test Data." Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 6: Structures and Dynamics, Parts A and B. Glasgow, UK. June 14–18, 2010. pp. 263-271. ASME. https://doi.org/10.1115/GT2010-22983
Download citation file:
22
Views
Related Proceedings Papers
Related Articles
Influence of Multiphysical Effects on the Dynamics of High Speed Minirotors—Part I: Theory
J. Vib. Acoust (June,2010)
Thermohydrodynamic Analysis of a Controllable Stiffness Foil Bearing With Shape Memory Alloy Springs: Experimental Tests and Theoretical Predictions
J. Tribol (March,2024)
Dynamic Response and Stability of Pressurized Gas Squeeze-Film Dampers
J. Vib. Acoust (January,1998)
Related Chapters
Summary and Conclusions
Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential