Demands on improved efficiency, reduced emissions and lowered noise levels result in higher by-pass ratio turbofan engines. The design of the intermediate turbine duct, connecting the high-pressure and low-pressure turbines in a two-spool engine, becomes thus more critical. The radial offset between the high-pressure core and the low-pressure system will increase, which leads to a higher aspect ratio (Δr/L) of the turbine duct. In order to improve the low-pressure turbine performance the turbine duct exit axial velocity could be reduced by increasing the duct area ratio (Aout/Ain). In order to keep the turbine frame weight as low as possible, it is also desirable to keep the duct short, i. e. keep the non-dimensional length (L/hin) as low as possible. Therefore, there is a need to improve the knowledge about the flowfield and heat transfer in aggressive (high aspect ratio/high area ratio) turbine ducts. The work presented here has been performed within the EU FP6 project AITEB-2, focusing on heat transfer in turbines. In a two-part paper the aerothermal behavior of a fairly aggressive intermediate turbine duct with nine non-lifting vanes has been studied. The flowfield and heat transfer data was acquired in the Chalmers Turbine Facility. The first part of the paper focuses on the experimental investigation and results. In this second part of the paper comparisons between experimental data and numerical results are made. The work highlights the challenges associated with numerical predictions of flowfield induced heat transfer in turbine ducts. The numerical analysis was performed using Chalmers in-house compressible flow solver. The experimental results are compared to CFD analyzes using two different turbulence models; k-ε with wall functions and low-Re k-ω SST, and using the measured inlet conditions to the duct as boundary conditions. Previously presented flowfield comparisons showed good agreement between experiments and CFD. The main flow features, such as vorticity and pressure gradients, are reasonably well reproduced by the CFD. The heat transfer results show reasonable agreement on the hub and on the downstream part of the shroud. The heat transfer agreement is, however, poor on the shroud in the region between the duct inlet and the leading edge of the vane.
Skip Nav Destination
ASME Turbo Expo 2010: Power for Land, Sea, and Air
June 14–18, 2010
Glasgow, UK
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4399-4
PROCEEDINGS PAPER
Heat Transfer Investigation of an Aggressive Intermediate Turbine Duct: Part 2—Numerical Analysis
Fredrik Wallin,
Fredrik Wallin
Volvo Aero Corporation, Trollha¨ttan, Sweden
Search for other works by this author on:
Carlos Arroyo Osso
Carlos Arroyo Osso
Volvo Aero Corporation, Trollha¨ttan; Chalmers University of Technology, Go¨teborg, Sweden
Search for other works by this author on:
Fredrik Wallin
Volvo Aero Corporation, Trollha¨ttan, Sweden
Carlos Arroyo Osso
Volvo Aero Corporation, Trollha¨ttan; Chalmers University of Technology, Go¨teborg, Sweden
Paper No:
GT2010-22252, pp. 81-89; 9 pages
Published Online:
December 22, 2010
Citation
Wallin, F, & Arroyo Osso, C. "Heat Transfer Investigation of an Aggressive Intermediate Turbine Duct: Part 2—Numerical Analysis." Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 4: Heat Transfer, Parts A and B. Glasgow, UK. June 14–18, 2010. pp. 81-89. ASME. https://doi.org/10.1115/GT2010-22252
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
Enhanced Gas Turbine Performance Simulation Using CFD Modules in a 2D Representation of the Low-Pressure System for a High-Bypass Turbofan
J. Eng. Gas Turbines Power (July,2007)
The Influence of Downstream Passage on the Flow Within an Annular S-Shaped Duct
J. Turbomach (October,1998)
Related Chapters
Natural Gas Transmission
Pipeline Design & Construction: A Practical Approach, Third Edition
Applications
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
The Design and Implement of Remote Inclinometer for Power Towers Based on MXA2500G/GSM
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3