An experiment was conducted to investigate the surface wave development and the breakup processes of round water jets in cross airflows at room temperature and pressure by high-speed photography. The jets were injected normal to the crossflow direction opposing gravitation forces from a plain orifice nozzle with the diameter of 0.3 mm and length-to-diameter ratio of 40. Successive images were recorded by a megapixel high-speed video camera with maximum frame rate frequency of 10000 Hz. The jet injection velocity varied from 3.8 m/s to 7.8 m/s. The crossflow velocity varied from 25.6 m/s to 35.1 m/s which resulted in the liquid-to-air momentum flux ratio varied from 10.2 to 80. The experimental results indicate that the surface of the liquid jet is smooth at first and then the initial surface wave appears a distance downstream along the jet column. The structure of the liquid jet would be successively deformed to a spiral wave in the cross airflow. When the amplitude grows large enough the liquid column is pinched into segments from the locations of wave troughs due to surface tension. With the increasing of the cross airflow velocity the aerodynamic forces, instead of the surface tension, begin to play an important role in the column breakup process. The liquid column is disintegrated by the cutting of the aerodynamic forces. The smooth length defined as the distance from where initial surface wave appears to the nozzle exit is correlated with the test operation parameters. The smooth length will be increased with the increasing of the jet injection velocity and decreased with the increasing of airflow velocity. The liquid jet column will bend and fluctuate in the crossflow and the normalized fluctuation displacement of the liquid column is correlated with the test operation parameters. The results depict that the increasing of jet injection velocity will diminish the jet column fluctuation whereas the increasing of airflow velocity will enhance it. The liquid column breakup points also fluctuate in the cross airflow. The coordinates of the time-averaged breakup locations are correlated with the liquid-to-air momentum ratio. The equation of the near-field liquid column trajectory curve before the column breakup point is concluded. The curves based on the equation agree well with the tested results.
Skip Nav Destination
ASME Turbo Expo 2010: Power for Land, Sea, and Air
June 14–18, 2010
Glasgow, UK
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4397-0
PROCEEDINGS PAPER
Experiment on Breakup Processes and Surface Waves of Round Liquid Jets in Crossflows
Xiong-hui Wang
Xiong-hui Wang
Beihang University, Beijing, China
Search for other works by this author on:
Ying Zhu
Beihang University, Beijing, China
Yong Huang
Beihang University, Beijing, China
Fang Wang
Beihang University, Beijing, China
Xiong-hui Wang
Beihang University, Beijing, China
Paper No:
GT2010-23150, pp. 945-950; 6 pages
Published Online:
December 22, 2010
Citation
Zhu, Y, Huang, Y, Wang, F, & Wang, X. "Experiment on Breakup Processes and Surface Waves of Round Liquid Jets in Crossflows." Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 2: Combustion, Fuels and Emissions, Parts A and B. Glasgow, UK. June 14–18, 2010. pp. 945-950. ASME. https://doi.org/10.1115/GT2010-23150
Download citation file:
28
Views
Related Proceedings Papers
Related Articles
Filling Process in an Open Tank
J. Fluids Eng (November,2003)
Long-Wave Instabilities in a Non-Newtonian Film on a Nonuniformly Heated Inclined Plane
J. Fluids Eng (March,2009)
Plane Turbulent Surface Jets in Shallow Tailwater
J. Fluids Eng (March,2001)
Related Chapters
Hydro Power: Global and North American Perspectives
Hydro, Wave and Tidal Energy Applications
A Simple Carburetor
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
Pulsating Supercavities: Occurrence and Behavior
Proceedings of the 10th International Symposium on Cavitation (CAV2018)