Nowadays 2D through-flow models are widespread for designing and analysis of a turbine. Unlike 2D calculations, the measurements show that a non-uniform inlet gas temperature profile is strongly attenuated to the outlet of a turbine. This attenuation can be taken into account in through-flow models only using some corrective coefficients. The objective of this work was to find such an empirical coefficient. The results of full-scale tests of several power GTUs and aviation GTEs were employed to obtain values of the temperature profile attenuation coefficient in the through-flow model for various span locations of airfoil rows. During the tests detailed radial-circumferential distributions of the gas temperature upstream of each of rows and downstream of the turbines were measured (in absolute motion for stator and in relative motion for rotor). The values of the attenuation coefficient for airfoil rows of the three front stages were obtained by means comparison of experimental and computed results. The experience shows that the attenuation coefficient is easily incorporated into the 2D gas-dynamic codes. This incorporation allows spanwise distributions of flow parameters to be predicted and the airfoil geometry and cooling mass flow to be chosen more correctly.

This content is only available via PDF.
You do not currently have access to this content.