This work investigates Non-Synchronous Vibrations (NSV) encountered in a turbine engine axial flow compressor using a Computational Fluid Dynamics (CFD) approach. It has been proposed that the resonance of the tip clearance flow in compressor blades could be the physical mechanism behind NSV. This work’s emphasis is on being able to computationally capture this resonance and predict the critical NSV speed using CFD. This would considerably reduce the costs involved in future hardware design and testing. The model uses the same compressor blade geometry on which experimental validation of the proposed NSV theory was conducted. The flow interaction with blade vibratory motion is modeled using a moving mesh capability and a SAS-SST turbulence model is used for computation. A review of the proposed theory on NSV is done. The CFD model is first verified with experimental data and then characterized to ensure that the simulations are conducted at the proper NSV conditions, in order to assess the resonance of the tip clearance flow. Evidence of this resonance behavior is presented and critical NSV speeds are identified based on numerical results for two different inlet temperature cases and are validated against experimental data. Further study of the actual flow structure associated with NSV is done. Additional remarks on the numerical results are discussed. An iterative design methodology to account for NSV is also proposed based on the current numerical study.

This content is only available via PDF.
You do not currently have access to this content.