It is necessary to increase and estimate friction damping at contact interfaces to reduce vibratory stresses in turbines. The hysteresis behavior between tangential contact force and relative displacement should be precisely estimated to improve the accuracy of fiction-damping estimates. There is a difficulty in establishing a general model of hysteresis because tangential contact stiffness depends on many parameters, such as normal contact force, contact geometry, surface roughness, and wear status. We discuss a procedure to empirically calculate friction damping in dovetail root joints using the tangential contact stiffness estimated from measured natural frequencies and the micro-slip model whose coefficients were experimentally obtained from special fretting tests. Instead of the multi-harmonic balance methods, we calculated the friction damping on the basis of the energy dissipation at contact surfaces to discuss the effects of the tangential contact stiffness on several physical values, i.e., tangential and normal contact forces, natural frequency, and micro-slip. In our model, the linear forced response analysis was conducted by taking into consideration the non-linearity between the tangential contact force and the relative displacement by defining the actual and imaginary tangential contact stiffness. We confirmed that the numerically calculated damping ratios are quantitatively in very good agreement with the measured ones under different contact angles, input gravity levels, and contact forces. This indicates that if the tangential contact stiffness is accurately estimated, friction damping with our method can be precisely estimated under different test conditions. We also showed that the estimated tangential contact stiffness for dovetail root joints are smaller than those obtained by the fretting tests at high input gravity. This is probably because the contact interface partially separates during a cyclic loading in the former case; this results in the decrease of the contact area and contact stiffness.

This content is only available via PDF.
You do not currently have access to this content.