Internal cooling of the trailing edge region in a gas turbine blade is typically achieved with an array of pin fins. In order to better understand the effectiveness of this configuration for heat transfer, an unsteady Reynolds-averaged Navier Stokes computation is performed on a single row of cylindrical pin fins with a spanwise distance to fin diameter ratio of 2 and height over fin diameter ratio of one. With a locally adapted mesh, the boundary layer is resolved throughout the domain. For validation purposes, the flow Reynolds number based on hydraulic channel diameter ReDH = 12,800 was set to match experiments available in the open literature. The resulting time-dependent flow field was analyzed using a variation of Proper Orthogonal Decomposition (POD), where the correlation matrices were built using the internal energy in addition to the three velocity components. This enables a flow decomposition with respect to the flow structure’s influence on surface heat transfer. The second and third most energetic modes showed a zero temperature eigenfunction, which means that a considerable amount of energy is contained in flow structures that don’t contribute to increasing endwall heat transfer. It was also found that the vortex shedding frequency changes over time and both lift coefficient and Strouhal number increase compared to experimental values for a single cylinder.
Skip Nav Destination
ASME Turbo Expo 2009: Power for Land, Sea, and Air
June 8–12, 2009
Orlando, Florida, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4884-5
PROCEEDINGS PAPER
Identifying Inefficiencies in Unsteady Pin Fin Heat Transfer
Markus Schwa¨nen,
Markus Schwa¨nen
Texas A&M University, College Station, TX
Search for other works by this author on:
Andrew Duggleby
Andrew Duggleby
Texas A&M University, College Station, TX
Search for other works by this author on:
Markus Schwa¨nen
Texas A&M University, College Station, TX
Andrew Duggleby
Texas A&M University, College Station, TX
Paper No:
GT2009-60219, pp. 909-916; 8 pages
Published Online:
February 16, 2010
Citation
Schwa¨nen, M, & Duggleby, A. "Identifying Inefficiencies in Unsteady Pin Fin Heat Transfer." Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. Orlando, Florida, USA. June 8–12, 2009. pp. 909-916. ASME. https://doi.org/10.1115/GT2009-60219
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Computational Analysis of Pin-Fin Arrays Effects on Internal Heat Transfer Enhancement of a Blade Tip Wall
J. Heat Transfer (March,2010)
Detailed Heat Transfer Measurements in a Model of an Integrally Cast Cooling Passage
J. Turbomach (April,2010)
Identifying Inefficiencies in Unsteady Pin Fin Heat Transfer Using Orthogonal Decomposition
J. Heat Transfer (February,2012)
Related Chapters
Vortex-Induced Vibration
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook
Extended Surfaces
Thermal Management of Microelectronic Equipment
Extended Surfaces
Thermal Management of Microelectronic Equipment, Second Edition