The U.S. Navy has nearly forty years of experience using SSS (Synchro-Self-Shifting) Clutches in main reduction gears of gas-turbine-driven ships and propulsion systems with combinations of gas turbines and diesel engines or electric motors, and in steam-turbine propulsion plants for use with electric motor drives. Over 900 SSS Clutches have been installed in fourteen different classes of U.S. Navy ships, some in service for over thirty years. This paper presents a brief overview of the principle SSS Clutch design features and the operating experience in naval propulsion systems worldwide, including operation in various propulsion plants such as controllable reversible pitch (CRP) propellers, fixed-pitch propellers (FPP), etc. The paper will also focus on SSS Clutch designs for specific U.S. Navy applications and installations, U.S. Navy experience, and design changes and improvements that have been implemented since the initial U.S. Navy use of SSS Clutches. Detailed metric (statistical) data, used by the U.S. Navy to evaluate equipment performance and life cycle costs, such as mean time between failure (MTBF), mean time to repair (MTTR), mean logistics delay time (MLDT), and operational availability (Ao) will be used to support experience. In-service experience and failure modes will also be explained as well as findings from the evaluation of clutches that have been subjected to extreme operation/incidents such as overspeed, overtorque, high shock blast, and flood damage. The final part of the paper will discuss current/future applications on U.S. Navy vessels such as the LHD-8, LCS and others; and how the design/features of those SSS Clutch designs will satisfy the operational, reliability, and maintainability requirements established for each ship platform. The metrics and lessons learned will be shown to be equally applicable to clutches for critical auxiliary drive applications such as naval gas turbine generator starting and naval steam turbine generator turning gear systems and how these metrics and lessons learned are being applied for current and future U.S. Navy ship systems.

This content is only available via PDF.
You do not currently have access to this content.