Depending on the blade aspect ratio, tip-leakage losses can contribute up to one third of the total losses in an axial turbine blade row. In unshrouded turbine blade rows, the radial gaps allow working fluid to pass from the pressure to the suction sides. This tip-leakage flow does not contribute to the work output of the turbine stage. Therefore, any technique which tends to reduce tip-leakage losses has the objective to decrease the flow through the tip gaps. A frequently used method of reducing the tip-leakage flow is the modification of the blade tip geometry by so-called squealers or winglets. Since this method decreases the sensitivity of tip-leakage losses on tip gap width, it is called tip desensitization. This paper presents a new method for tip desensitization: the passive blade tip injection. A low speed cascade wind tunnel is used for experimental investigations. Geometry of the turbine cascade is the up-scale of the tip section of a gas turbine rotor row. Three different gap widths in the range from 0.85% to 2.50% chord length are used. Total pressure, static pressure and flow angles are obtained by traversing a pneumatic five-hole probe about 0.3 axial chord lengths downstream of the turbine cascade. For investigations of the tip injection effect, a single blade of the cascade is modified by an injection channel. Based on experimental results, it is shown that the passive tip injection method decreases tip-leakage losses. At small tip gaps, this reduction can be rather significant. Finally, the positive influence of blade tip injection on tip-leakage losses is described by an analytical model based on the discharge coefficient.

This content is only available via PDF.
You do not currently have access to this content.