Forced response analysis has become commonplace for predicting the vibration amplitude of turbomachinery blading. These analyses are usually limited because they rely on predicting a well defined source of flow distortion, such as blade wakes and shocks etc. However, the sources of excitation of civil fans are not well defined and yet are able to produce high levels of force. The objective of the work described in this paper is to investigate the forced response of a large civil fan assembly using CFD. An unsteady, time accurate, 3D CFD model of the complete low pressure compression system has been used to calculate the modal response of a large civil fan. The mesh consists of the ground plane, intake, fan, OGV, bypass duct and compressor inlet stator, with every aerofoil passage modelled. The analysis tool allows calculation of a time history of modal response for a range of modes simultaneously to provide a description of the overall vibration behaviour. The results of the analyses have been used to investigate the modal contributions to the off-resonant first engine order response at a range of operating conditions to assess the contribution of various geometric features. The response is shown to compare well with measured strain gauge data for both ground and altitude conditions. The response of the majority of resonances was found to be heavily influenced by the presence of the ground plane, which is consistent with the available experimental data.
Skip Nav Destination
ASME Turbo Expo 2008: Power for Land, Sea, and Air
June 9–13, 2008
Berlin, Germany
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4315-4
PROCEEDINGS PAPER
Forced Response of a Large Civil Fan Assembly
J. S. Green
J. S. Green
Rolls-Royce plc, Derby, UK
Search for other works by this author on:
J. S. Green
Rolls-Royce plc, Derby, UK
Paper No:
GT2008-50319, pp. 685-692; 8 pages
Published Online:
August 3, 2009
Citation
Green, JS. "Forced Response of a Large Civil Fan Assembly." Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 5: Structures and Dynamics, Parts A and B. Berlin, Germany. June 9–13, 2008. pp. 685-692. ASME. https://doi.org/10.1115/GT2008-50319
Download citation file:
54
Views
Related Proceedings Papers
Related Articles
A Correlation-Based Transition Model Using Local Variables—Part II:
Test Cases and Industrial Applications
J. Turbomach (January,0001)
Numerical Investigation of the Influence of Real World Blade Profile Variations on the Aerodynamic Performance of Transonic Nozzle Guide Vanes
J. Turbomach (March,2012)
Experimental Reduction of Transonic Fan Forced Response by Inlet Guide Vane Flow Control
J. Turbomach (April,2010)
Related Chapters
Fluidelastic Instability of Tube Bundles in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach, Second Edition