Non-Synchronous Vibration (NSV) is a particular type of aero-elastic phenomenon where the rotor blades vibrate at non-integral multiples of the shaft rotational frequencies. NSV behaviour appears similar to off-design stall flutter but with a particular blade tip flow evolution. This paper demonstrates the link between NSV and the resonance induced by the tip clearance flow, based on a proposed hypothesis. At off-design operating conditions, the rotor blade tip clearance shear layer flow can evolve tangentially. It is proposed that this tangential flow becomes a support for an acoustic feedback wave that settles between rotor blades. The feedback wave is driven by the blade vibratory motion. This forms a closed loop system where the feedback wave synchronizes the shear layer vortical structures with the blade vibration frequency. Depending on the blade tip local temperature, and when the feedback wavelength matches within one or two blade pitches, the system becomes resonant and very high vibrations can occur on the blade. An axial stage compressor test rig is used to look into the underlying mechanism behind NSV. The experimental apparatus consists of the first stage of a High Pressure Compressor (HPC) driven by an electric motor. The test section is built to minimize the effects of the adjacent stator blade rows to isolate the role of rotor blade tip clearance flow on NSV. Sensitivity studies are carried out to assess the effects of the rotor blade tip clearance and inlet temperature on NSV. Finally, evidence of the staging phenomena, inherent to the proposed NSV mechanism, is experimentally obtained.

This content is only available via PDF.
You do not currently have access to this content.