The gap friction damper model is presented in this paper, which is employed to simulate the friction forces at the contact points of the shroud interface. Using the harmonic balance method (HBM), the friction force can be approximated by a series of harmonic functions. The governing differential equations of blade motion are transformed into a set of nonlinear algebraic equations, which can be solved iteratively to yield the steady-state response. The results show that the forced response is attenuated due to the additional damping introduced by frictional slip. The predicted results agree well with those of the Runge-Kutta method. In addition, the effect of parameters of damping structures such as the gap size, friction coefficient and normal load on the forced response of blades were studied. The results show that increasing the damper gap size causes a increase in resonant response. However, the increment isn’t obvious. In addition, an increase in friction coefficient or normal load decreases the forced response of blade.

This content is only available via PDF.
You do not currently have access to this content.