Following a reanalysis of the original material data plus supplementary Low Cycle Fatigue (LCF) specimen testing, an Original Equipment Manufacturer (OEM) reduced the low cycle fatigue life limits for a number of turbine components. To ascertain the validity of the new life limits, an international collaborative spin rig test program was initiated to provide more accurate low cycle fatigue life limits. The program covered a broad range of activities including, Finite Element (FE) stress analyses, cyclic spin rig testing, fractographic assessment and fatigue crack growth (FCG) analyses. This paper describes the 2D and 3D crack growth analyses of critical turbine components in a turboprop gas turbine engine, comparison of predicted results obtained using different software and also correlations with spin test results from the program. First, FE stress analyses of selected turbine components were carried out under both engine operating conditions and spin-rig test configurations in order to determine the maximum and minimum operating speeds required to match the stress ranges at the critical location specified by the OEM under engine operating conditions. Second, 2D and 3D crack growth analyses were performed independently by three organisations for a disk bolthole using the state-of-the-art software. Third, the predictions from different software were compared, and the relative technical merits of each software were evaluated. Finally, the predicted results were correlated against the striation counts determined by the OEM from the results of spin rig tests.

This content is only available via PDF.
You do not currently have access to this content.