The following work presents a new type of hybrid journal bearing developed for enabling oil-free operation of high performance turbomachinery. The new design integrates compliant hydrostatic-hydrodynamic partitioned bearing pads with two flexibly mounted integral wire mesh dampers (IWMD). The primary aim of the new bearing configuration was to maximize the load carrying capacity and effective damping levels while maintaining adequate compliance to misalignment and variations in rotor geometry. The concept of operation is discussed along with the description of the bearing design. Several experiments using room temperature air as the working fluid were performed that demonstrate proof of concept, which include lift-off tests, bearing load tests, and rotordynamic characterization tests. The experiments demonstrate stable operation to 40,000 rpm (2.8 million DN) of a 2.750 in (70 mm) diameter bearing. In addition to the experimental results, an analytical model is presented for the compliant bearing system. The aeroelastic theory couples the steady state numerical solution of the compressible Reynolds flow equation with a flexible structure possessing translational and rotational compliance. This was achieved by formulating a fluid-structure force balance for each partitioned bearing pad while maintaining a global mass flow balance through the hydrostatic restrictors and bearing lands. Example numerical results for pad pressure profile, film thickness, torque, and leakage are shown.

This content is only available via PDF.
You do not currently have access to this content.