Ignition delay times of a “real” synthetic jet fuel (S8) were measured using an atmospheric pressure flow reactor facility. Experiments were performed between 900 K and 1200 K at equivalence ratios from 0.5 to 1.5. Ignition delay time measurements were also performed with JP8 fuel for comparison. Liquid fuel was prevaporized to gaseous form in a preheated nitrogen environment before mixing with air in the premixing section, located at the entrance to the test section of the flow reactor. The experimental data show shorter ignition delay times for S8 fuel than for JP8 due to the absence of aromatic components in S8 fuel. However, the ignition delay time measurements indicate higher overall activation energy for S8 fuel than for JP8. A detailed surrogate kinetic model for S8 was developed by validating against the ignition delay times obtained in the present work. The chemical composition of S8 used in the experiments consisted of 99.7 vol% paraffins of which approximately 80 vol% was iso-paraffins and 20% n-paraffins. The detailed kinetic mechanism developed in the current work included n-decane and iso-octane as the surrogate components to model ignition characteristics of synthetic jet fuels. The detailed surrogate kinetic model has approximately 700 species and 2000 reactions. This kinetic mechanism represents a five-component surrogate mixture to model generic kerosene-type jets fuels, namely, n-decane (for n-paraffins), iso-octane (for iso-paraffins), n-propylcyclohexane (for naphthenes), n-propylbenzene (for aromatics) and decene (for olefins). The sensitivity of iso-paraffins on jet fuel ignition delay times was investigated using the detailed kinetic model. The amount of iso-paraffins present in the jet fuel has little effect on the ignition delay times in the high temperature oxidation regime. However, the presence of iso-paraffins in synthetic jet fuels can increase the ignition delay times by two orders of magnitude in the negative temperature (NTC) region between 700 K and 900 K, typical gas turbine conditions. This feature can have a favorable impact on preventing flashback caused by the premature autoignition of liquid fuels in lean premixed prevaporized (LPP) combustion systems.

This content is only available via PDF.
You do not currently have access to this content.