This contribution describes the investigation of an engine-scale catalytic hybrid burner. The burner has been investigated under atmospheric conditions with preheated air and natural gas fuel in two operating points, with and without the catalytic reactor. By using the catalyst, an extension of the operating range to leaner stoichiometries has been demonstrated. Exhaust gas analysis performed directly downstream of the burner as well as in the burner far-field showed a NOx reduction potential of more than 20% when employing the catalyst. For the operation with the catalytic reactor, the flame stabilization process and dependency of NOx formation on the piloting gas ratio is described with results of OH chemiluminescence measurements. Radial temperature profiles taken with Coherent Anti Stokes Raman Scattering (CARS) suggest a reaction delay directly downstream of the catalytic section of the burner. Calculations with a perfectly stirred reactor model help to obtain a better understanding of the kinetics of the hot gases leaving the catalyst section.

This content is only available via PDF.
You do not currently have access to this content.