In this paper, a novel gas turbine cycle integrating methanol decomposition and the chemical-looping combustion (CLC) is proposed. The system study on two methanol-fuelled power plants, the new gas turbine cycle with CLC combustion, and a chemically intercooled gas turbine cycle, has been investigated with the aid of the exergy analysis (EUD methodology). In the proposed system, methanol fuel is decomposed into syngas mainly containing H2 and CO by recovering low-temperature thermal energy from an intercooler of the air compressor. After the decomposition of methanol, the resulting product of syngas is divided into two parts: the most part reacting with Fe2O3, is sent into the CLC subsystem, and the other part is introduced into a supplement combustor to enhance the inlet temperatures of turbine to 1100–1500°C. As a result, the new methanol-fuelled gas turbine cycle with CLC had a breakthrough in performance, with at least about 10.7 percentage points higher efficiency compared to the chemically intercooled gas turbine cycle with recovery of CO2 and is environmentally superior due to the recovery of CO2. This new system can achieve 60.6% net thermal efficiency with CO2 separation. The promising results obtained here indicated that this novel gas turbine cycle with methanol-fuelled chemical looping combustion could provide a promising approach of both effective use of alternative fuel and recovering low-grade waste heat, and offer a technical probability for CLC in applying into the advanced gas turbine with high temperatures above 1300°C.

This content is only available via PDF.
You do not currently have access to this content.