The efficiency of an integrated coal gasification system equipped with a molten carbonate fuel cell, a gas turbine and a steam turbine (IG/MCFC) is calculated. Coal is conveyed to a gasifier furnace by CO2 and changed to coal gas by adding oxygen; a methyldiethanolamine (MDEA) method is applied to initiate a cleanup procedure of the coal gas. A water-gas shift converter is employed to heat up the coal gas. The cathode gas of the MCFC is composed of CO2 and O2 with a composition of 66.7/33.3 (noble cathode gas composition). The magnitude of the system’s electrical power output is assumed to be that of a 300 MW class. The calculated net efficiency of the 2.2 MPa pressurised system reached a 60.1% high heating value (HHV) without CO2 recovery. The 2.2 MPa pressurised system, however, has a short lifetime limited by the shortening of electrodes. For this reason, a further 0.15 MPa pressurised system (low pressurised system) efficiency is recorded which has a more promising shortening time of the electrodes. The net efficiency of the low pressurised system is 51.9% HHV without CO2recovery. Since the coal is gasified using oxygen and the cathode gas of the MCFC is composed of CO2/O2, the system’s exhaust gas only includes CO2, thus the system is ready for the recovery and storage of carbon dioxide (Carbon Capture and Storage ready, CCS ready). For the purpose of estimating the net efficiency with CO2 recovery, a liquid form of CO2 with a pressure of 10MPa is assumed. Using the 2.2 MPa pressurised system, the net efficiency including the consumption of CO2 compression and liquefaction is evaluated at 58.2% HHV. Another simple CO2 closed system configuration without gas turbine is proposed; the net efficiencies of the 2.2 MPa and the 0.15 MPa system including the consumption of CO2 liquefaction are determined at 56.4% and 50.3% HHV, respectively. According to the calculation results, a high efficiency system with CO2 recovery is possible by applying the noble cathode gas in the IG/MCFC systems.

This content is only available via PDF.
You do not currently have access to this content.