The unsteady wake-boundary layer interaction on a high lift low pressure (LP) turbine airfoil T106C was investigated by applying the hybrid structured-unstructured RANS solver developed at the DLR. The simulation domain was split into two parts: a translational one with moving bars and a stationary one with turbine airfoils, and in between was a sliding mesh interface. An unstructured grid was generated around the moving bars with particular clustering along the wake path to have a sharp resolution of the shedding vortex street, whereas the stationary blade airfoil subject to the incoming wakes was meshed with a block-structured grid to ease the implementation of the laminar-turbulent transition model around the airfoil. The Wilcox two-equation k-ω turbulence model was applied in conjunction with a multi-mode transition model developed by the authors taking into account several modes of transition, namely natural/bypass, separated-flow and wake-induced transition modes. In this paper, the hybrid-grid modeling is first validated against measurements from the VKI, and then the unsteady flow mechanisms associated with the shedding vortices and the multi-mode transition on the blade airfoil are analyzed. Furthermore, the quasi-steady mixing-plane model on the hybrid grids is also assessed by a comparison with the time-mean of the unsteady state solutions. In particular, different chopping to the incoming vortex street at the blade leading edge is found to have different effects on the separation and transition over the blade suction surface. At the end a composite picture of the boundary-layer development over the suction surface is summarized.
Skip Nav Destination
ASME Turbo Expo 2007: Power for Land, Sea, and Air
May 14–17, 2007
Montreal, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4795-0
PROCEEDINGS PAPER
Hybrid-Grid Simulation of Unsteady Wake-Boundary Layer Interaction on a High Lift Low Pressure Turbine Airfoil
Hong Yang,
Hong Yang
German Aerospace Center, Cologne, Germany
Search for other works by this author on:
Thomas Roeber,
Thomas Roeber
German Aerospace Center, Cologne, Germany
Search for other works by this author on:
Dragan Kozulovic
Dragan Kozulovic
German Aerospace Center, Cologne, Germany
Search for other works by this author on:
Hong Yang
German Aerospace Center, Cologne, Germany
Thomas Roeber
German Aerospace Center, Cologne, Germany
Dragan Kozulovic
German Aerospace Center, Cologne, Germany
Paper No:
GT2007-28111, pp. 1805-1815; 11 pages
Published Online:
March 10, 2009
Citation
Yang, H, Roeber, T, & Kozulovic, D. "Hybrid-Grid Simulation of Unsteady Wake-Boundary Layer Interaction on a High Lift Low Pressure Turbine Airfoil." Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air. Volume 6: Turbo Expo 2007, Parts A and B. Montreal, Canada. May 14–17, 2007. pp. 1805-1815. ASME. https://doi.org/10.1115/GT2007-28111
Download citation file:
8
Views
0
Citations
Related Proceedings Papers
Related Articles
Effects of Reynolds Number and Freestream Turbulence Intensity on the Unsteady Boundary Layer Development on an Ultra-High-Lift Low Pressure Turbine Airfoil
J. Turbomach (January,2010)
Analysis of Steady and Unsteady Turbine Cascade Flows by a Locally Implicit Hybrid Algorithm
J. Turbomach (October,1993)
Separated Flow Transition on an LP Turbine Blade With Pulsed Flow Control
J. Turbomach (April,2008)
Related Chapters
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Introduction
Design and Analysis of Centrifugal Compressors
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3