In turbocharger applications bleed air near the impeller exit is often used for secondary flow systems to seal bearing compartments and to balance the thrust load on the bearings. There is experimental evidence that the performance and operability of highly loaded centrifugal compressor designs can be sensitive to the amount of bleed air. To investigate the underlying mechanisms and to assess the impact of bleed air on the compressor dynamic behavior, a research program was carried out on a pre-production, 5.0 pressure ratio, high-speed centrifugal compressor stage of advanced design. The investigations showed that bleed air can significantly reduce the stable flow range. Compressor rig experiments, using an array of unsteady pressure sensors and a bleed valve to simulate a typical turbocharger environment, suggest that the path into compression system instability is altered by the bleed flow. Without bleed flow, the pre-stall behavior is dominated by short wavelength disturbances, or so called ‘spikes’, in the vaneless space between the impeller and the vaned diffuser. Introducing bleed flow at impeller exit reduces endwall blockage in the vaneless space and destabilizes the highly-loaded vaned diffuser. The impact is a 50% reduction in stable operating range. The altered diffuser characteristic reduces the compression system damping responsible for long wavelength, modal pre-stall behavior. A four-lobed backward traveling rotating stall wave is experimentally measured, in agreement with calculations obtained from a previously developed dynamic compressor model. In addition, a self-contained, endwall blockage control strategy was employed, successfully recovering 75% of the loss in surge-margin due to bleed flow and yielding a 1 point increase in adiabiatic compressor efficiency.

This content is only available via PDF.
You do not currently have access to this content.