This paper reports on experimental and numerical investigations on circumferential grooves in an axial single-stage transonic compressor. Total pressure ratio and efficiency speedlines were taken at design speed and three off-design conditions. The experiments comprise four different configurations with deep and shallow grooves and variable coverage of the projected rotor axial chord. All casing treatments proved to have a beneficial effect on stall range while maintaining high levels of efficiency, even at off-design operation. Deep grooves extending almost to the trailing edge showed the biggest potential: the mass flow at stall inception for design speed could be strongly reduced, and the operating range could be enlarged by 56.1%. When three shallow grooves were applied to the compressor, the stage efficiency at design speed was shifted to slightly higher values. A possible explanation could be a favorable change in stator aerodynamics due to the reduction of corner separation. For a closer look into the physical effects of grooves on the tip leakage flow, a rotor-only CFD analysis has been carried out using a steady state calculation. A multi-block grid with approximately 1.2 million nodes was used. The numerical simulations reveal strong effects of circumferential grooves on the rotor flow field at tip. Mach-number contours, axial velocity distributions and particle traces for the smooth casing and six deep grooves are presented at stall mass flow. Compared to the smooth wall case, the treated casing significantly reduces blockage in the tip area and weakens the roll-up of the core vortex. These mechanisms prevent an early spillage of low momentum fluid into the adjacent blade passage and delay the onset of rotating stall.
Skip Nav Destination
ASME Turbo Expo 2007: Power for Land, Sea, and Air
May 14–17, 2007
Montreal, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4795-0
PROCEEDINGS PAPER
Effect of Circumferential Grooves on the Aerodynamic Performance of an Axial Single-Stage Transonic Compressor Available to Purchase
Martin W. Mu¨ller,
Martin W. Mu¨ller
Technische Universita¨t Darmstadt, Darmstadt, Germany
Search for other works by this author on:
Heinz-Peter Schiffer,
Heinz-Peter Schiffer
Technische Universita¨t Darmstadt, Darmstadt, Germany
Search for other works by this author on:
Chunill Hah
Chunill Hah
NASA Glenn Research Center, Cleveland, OH
Search for other works by this author on:
Martin W. Mu¨ller
Technische Universita¨t Darmstadt, Darmstadt, Germany
Heinz-Peter Schiffer
Technische Universita¨t Darmstadt, Darmstadt, Germany
Chunill Hah
NASA Glenn Research Center, Cleveland, OH
Paper No:
GT2007-27365, pp. 115-124; 10 pages
Published Online:
March 10, 2009
Citation
Mu¨ller, MW, Schiffer, H, & Hah, C. "Effect of Circumferential Grooves on the Aerodynamic Performance of an Axial Single-Stage Transonic Compressor." Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air. Volume 6: Turbo Expo 2007, Parts A and B. Montreal, Canada. May 14–17, 2007. pp. 115-124. ASME. https://doi.org/10.1115/GT2007-27365
Download citation file:
106
Views
Related Proceedings Papers
Related Articles
Experimental Investigation of Unsteady Flow Field in the Tip Region of an Axial Compressor Rotor Passage at Near Stall Condition With Stereoscopic Particle Image Velocimetry
J. Turbomach (July,2004)
Experimental Investigation of the Effects of a Moving Shock Wave on Compressor Stator Flow
J. Turbomach (January,2007)
Related Chapters
Other Components and Variations
Axial-Flow Compressors
Introduction
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential