The paper presents parameter identification measurements conducted on a squeeze film damper (SFD) featuring a non-rotating mechanical seal that effectively eliminates lubricant side leakage. The SFD-seal arrangement generates dissipative forces due to viscous and dry-friction effects from the lubricant film and surfaces in contact, respectively. The test damper reproduces an aircraft application that must contain the lubricant for extended periods of time. The test damper journal is 2.54 cm in length and 12.7 cm in diameter, with a nominal clearance of 0.127 mm. The damper feed end opens to a plenum filled with lubricant, and at its discharge grooved section, four orifice ports evacuate the lubricant. In prior publications (ASME Paper GT2006-90782, IJTC2006-12041), single frequency force excitation tests were conducted, without and with lubricant in the squeeze film land, to determine the seal dry-friction force and viscous damping force coefficients. Presently, further measurements are conducted to identify the test system and SFD force coefficients using two sets of flow restrictor orifice sizes (2.8 mm and 1.1 mm in diameter). The flow restrictors regulate the discharge flow area, and thus control the oil flow through the squeeze film. The experiments also include measurements of dynamic pressures at the squeeze film land and at the discharge groove. The magnitude of dynamic pressure in the squeeze film land is nearly identical for both sets of flow restrictors, and for small orbit radii, dynamic pressures in the discharge groove have peak values similar to those in the squeeze film land. The identified parameters include the test system damping and the individual contributions from the squeeze film, dry friction in the mechanical seal and structure remnant damping. The identified system damping coefficients are frequency and motion amplitude dependent due to the dry friction interaction at the mechanical seal interface. Squeeze film force coefficients, damping and added mass, are in agreement with simple predictive formulas for an uncavitated lubricant condition and are similar for both flow restrictor sizes. The SFD-mechanical seal arrangement effectively prevents air ingestion and entrapment and generates predicable force coefficients for the range of frequencies tested.

This content is only available via PDF.
You do not currently have access to this content.