A new reduced order Aeroelastic Model using the Principal Shapes of modes (AMPS) is presented. Rotors with flexible disks and alternate blade mistuning can challenge the fidelity of flutter prediction techniques that assume uniform blade-to-blade geometry and mode shape invariance with nodal diameter pattern. The AMPS method, however, accounts for alternating blade geometry as well as varying blade mode shapes, providing accurate flutter predictions for a large number of modes from a small number of CFD (computational fluid dynamics) simulations. AMPS calculations on rotors with alternate blade mistuning are presented and compared to other prediction techniques. The results provide insight into how alternate blade mistuning affects aerodynamic coupling and the flutter characteristics of a rotor.

This content is only available via PDF.
You do not currently have access to this content.