This paper highlights some engine non-linearities that can affect both performance and robustness of aero engines. It pays particular attention to non-linearities generated at the stator vane contact end joints. These non-linearities resulting from friction contact joints affect the vane modeshapes, damping and forced response. This work proposes upper and lower bound solutions based on vane end restraints non-linearities to predict conservative forced response of stator vanes. Some non-linearities such as those caused by mistuning can be beneficial to the component and system. There are also non-linearities that can be detrimental to engine performance, robustness and reliability. Moreover, it proposes and discusses the concept of temporal HCF or CCF lifing method. Recent developments in FE, CFD, mistuning, forced response and probabilistic codes can help to create more integrated design tools that incorporate time-dependent non-linearities in the lifing of aero engine components. Computations performed here demonstrated some level of component virtual testing. These analyses are important component virtual testing that will be gradually extended to whole aero engine virtual testing.

This content is only available via PDF.
You do not currently have access to this content.