As important components of gas turbine engines, axial-flow compressors have been improved with a more complex and accurate airfoil design to meet high aerodynamic requirements; specifically, the pressure and suction surfaces of the airfoils (or blades) are now represented with free-form surfaces in CAD software systems. Since quality of the blades affects efficiency of the engines and safety of the aircrafts, some types of compressors are produced with the blades and the hub as a single piece on 4-axis CNC milling machines. However, it is still quite challenging to automatically determine cutter sizes and orientations without gouging and interference during the 4-axis milling, because the geometric shape of the blades is complex and the blades overlap with each other. As a result, the established method of determining tool size and orientation in industry is by trial and error in a repetitive process of selecting cutters and planning tool-paths with CAM systems. To address this problem, a novel approach is proposed to automatically determine cutter sizes and orientations for 4-axis milling of the axial-flow compressors blades without gouging and interference. The main contribution of this work is that (1) a mathematical model for optimizing cutter sizes in 4-axis milling is established; and (2) by applying a global optimization method — the particle swarm optimization method — to this model, the maximum allowable size of a cutter and its corresponding orientation can be found at each cutter-contact (CC) point on the surface being machined. Therefore, all the maximum allowable sizes of cutters for all the CC points and the corresponding cutter orientations can be computed. A group of standard cutters are then selected; each of which can sweep particular CC points without damaging the compressor. Since it is efficient and reliable, this newly proposed approach can be directly implemented in commercial CAD/CAM software systems to benefit the manufacturing industry.
Skip Nav Destination
ASME Turbo Expo 2007: Power for Land, Sea, and Air
May 14–17, 2007
Montreal, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4794-2
PROCEEDINGS PAPER
Automated Tool-Orientation Determinations for 4-Axis Non-Gouge, Non-Interference Milling of Axial-Flow Compressors Airfoils Available to Purchase
Zezhong C. Chen,
Zezhong C. Chen
Concordia University, Montre´al, QC, Canada
Search for other works by this author on:
Gang Liu
Gang Liu
Concordia University, Montre´al, QC, Canada
Search for other works by this author on:
Zezhong C. Chen
Concordia University, Montre´al, QC, Canada
Gang Liu
Concordia University, Montre´al, QC, Canada
Paper No:
GT2007-28169, pp. 147-154; 8 pages
Published Online:
March 10, 2009
Citation
Chen, ZC, & Liu, G. "Automated Tool-Orientation Determinations for 4-Axis Non-Gouge, Non-Interference Milling of Axial-Flow Compressors Airfoils." Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2007. Montreal, Canada. May 14–17, 2007. pp. 147-154. ASME. https://doi.org/10.1115/GT2007-28169
Download citation file:
17
Views
Related Articles
Geometric Design Investigation of Single Screw Compressor Rotor Grooves Produced by Cylindrical Milling
J. Mech. Des (July,2009)
An Intelligent Approach to Multiple Cutters of Maximum Sizes for Three-Axis Milling of Sculptured Surface Parts
J. Manuf. Sci. Eng (February,2009)
Related Chapters
Detailed Airfoil Design for Axial-Flow Turbines
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
Introduction
Axial-Flow Compressors
Axial-Flow Compressor Blade Profiles
Axial-Flow Compressors