The oxidation of kerosene and bio-kerosene (kerosene-rapeseed oil methyl esters 80/20 in mole) was studied experimentally in a jet-stirred reactor at 10 atm and constant residence time, over the high temperature range 740-1200 K, and for variable equivalence ratios in the range 0.5–1.5. Concentration profiles of reactants, stable intermediates, and final products were obtained by probe sampling followed by on-line and off-line GC analyses. The oxidation of these fuels in these conditions was modeled using a detailed kinetic reaction mechanism consisting of 2027 reversible reactions and 263 species. The surrogate bio-kerosene model-fuel used consisted of a mixture of n-hexadecane, n-propylcyclohexane, n-propylbenzene, and n-decane. For bio-kerosene, the methyl ester fraction was simply represented by n-hexadecane. The proposed kinetic reaction mechanism used in the modeling yielded a good representation of the kinetics of oxidation of kerosene and bio-kerosene under JSR conditions. The data and the model showed the bio-kerosene (Jet A-1/RME mixture) has a slightly higher reactivity than Jet A-1 whereas not major modification of the products distribution was observed besides the formation of small methyl esters from RME’s oxidation.

This content is only available via PDF.
You do not currently have access to this content.