Monolithic ceramics and continuous fiber reinforced ceramic composites are being developed for use in high temperature applications such as combustor liners in gas turbines, thrust deflectors for jet engines, and thruster nozzles. Ceramic composite materials possess the high temperature resistance properties of ceramics, but have better creep and cyclic properties. However, the properties of these materials change somewhat with time at service temperatures, i.e., their material state changes as a function of service conditions and history. The authors have developed a methodology for representing and combining the effects of high temperature material state changes in CMCs, along with changes in applied stress / strain conditions during service, to estimate remaining strength and life of ceramic composite materials and components. Fatigue, creep rupture, and time dependent deformation are combined by a strength metric in integral form to create a time-resolved, point-wise estimate of current remaining strength and life in material elements. Application of this methodology in discrete element representations of mechanical behavior of structural elements with nonuniform stress / strain states has been implemented.

This content is only available via PDF.
You do not currently have access to this content.