Reliability prediction of monolithic structural ceramics involves stress analysis through Finite Element Analysis (FEA) and a probability of failure prediction code such as CARES that considers the strength of ceramics as a statistical (Weibull) distribution. Though the strength is considered as a statistical distribution, stress in a given volume or surface element is discrete in current practice. However, uncertainties in FEA input such as material properties or boundary conditions make the predicted stress uncertain, thereby resulting in predicted reliability being uncertain as well. A probabilistic framework has been developed for reliability prediction to estimate component reliability by treating the uncertainties in loading, boundary conditions, and material properties as random variables. The framework consists of an automated, closed loop process integrating algorithms for assessing failure probability due to general randomness. Efficient and accurate computational methods for reliability analysis have been implemented in the framework for significant savings in computation time. The methodology is demonstrated on a gas turbine component. The analysis shows that reliability is compromised significantly by a design based on mean values of the random parameters, while an overly conservative design based on a worst case scenario will result in rejection of too many components at unnecessarily high proof test loads. This method ultimately leads to the determination of an optimum proof test level to assure component reliability amidst several sources of uncertainties in reliability prediction.
Skip Nav Destination
ASME Turbo Expo 2007: Power for Land, Sea, and Air
May 14–17, 2007
Montreal, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4790-X
PROCEEDINGS PAPER
Reliability Prediction of Monolithic Structural Ceramics With Uncertainties
X. Luo,
X. Luo
United Technologies Research Center, East Hartford, CT
Search for other works by this author on:
G. V. Srinivasan,
G. V. Srinivasan
United Technologies Research Center, East Hartford, CT
Search for other works by this author on:
W. K. Tredway
W. K. Tredway
United Technologies Research Center, East Hartford, CT
Search for other works by this author on:
X. Luo
United Technologies Research Center, East Hartford, CT
G. V. Srinivasan
United Technologies Research Center, East Hartford, CT
W. K. Tredway
United Technologies Research Center, East Hartford, CT
Paper No:
GT2007-27935, pp. 297-303; 7 pages
Published Online:
March 10, 2009
Citation
Luo, X, Srinivasan, GV, & Tredway, WK. "Reliability Prediction of Monolithic Structural Ceramics With Uncertainties." Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air. Volume 1: Turbo Expo 2007. Montreal, Canada. May 14–17, 2007. pp. 297-303. ASME. https://doi.org/10.1115/GT2007-27935
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Aerothermal Performance Robustness and Reliability Analysis of Turbine Blade Squealer Tip With Film Cooling
J. Turbomach (November,2024)
Nonlinear Stochastic Dynamics, Chaos, and Reliability Analysis for a Single Degree of Freedom Model of a Rotor Blade
J. Eng. Gas Turbines Power (January,2009)
Reliability-Based Design Optimization of Microstructures With Analytical Formulation
J. Mech. Des (November,2018)
Related Chapters
STRUCTURAL RELIABILITY ASSESSMENT OF PIPELINE GIRTH WELDS USING GAUSSIAN PROCESS REGRESSION
Pipeline Integrity Management Under Geohazard Conditions (PIMG)
On the Exact Analysis of Non-Coherent Fault Trees: The ASTRA Package (PSAM-0285)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design