This paper describes the integration of advanced methods such as component zooming and distributed computing, in an object-oriented simulation environment dedicated to gas turbine engine performance modelling. A 1-D compressor stage stacking method is used to demonstrate three approaches for integrating numerical zooming in an engine model. In the first approach a 1-D compressor model produces a compressor map that is then used in the engine model in place of the default one. In the second approach the results of the 1-D analysis are passed to the 0-D component through appropriate ‘zooming’ scalars. In the final approach the 1-D compressor component directly replaces the 0-D one in the engine model. Distributed computing is realized using Web Services technology. The implementation steps for a distributed scenario are presented. The standalone compressor stage stacking method, in the form of a shared library, is placed in a remote site and can be accessed over the internet through a Web Service Operation (server side). An engine simulation is set up containing a 1-D compressor component which acts as the client for the Web Service operation. Future development of the tool’s advanced capabilities is finally discussed.

This content is only available via PDF.
You do not currently have access to this content.