A large part of the total pressure losses in a compressor stage is caused by secondary flow effects like the separation between the wall and the vane i.e., a corner separation. An experimental and numerical investigation in a highly loaded compressor cascade was performed to understand the fluid mechanic mechanism of this corner separation in order to control it by using vortex generators. The experiments were carried out with a compressor cascade at a high-speed test facility at DLR in Berlin. The cascade consisted of five vanes and their profiles represent the cut at 10% of span distance from the hub of the stator vanes of a single stage axial compressor. The experiments were accomplished at Reynolds numbers up to Re = 0.6 × 106 (based on 40 mm chord) and Mach numbers up to M = 0.7. To measure the total pressure losses of the cascade (caused by the corner separation) a wake rake was used. It consisted of 26 pitot probes to measure the total pressure distribution of the outflow and 4 Conrad probes to determine the outflow angles. To detect the separation area on the vane, a flow visualisation technique was used. In addition to the experiments, numerical computations were carried out with the URANS TRACE, which has been developed at DLR for the simulation of steady and unsteady turbomachinery flow. The computations were performed with identical geometrical conditions as in the experiments, including the measured inflow boundary layer conditions at the side walls. The experiments were performed with the aim of controlling the corner separation. In this case, vortex generators as a passive flow control device were used. The vortex generators were attached at the surface of the suction side of the vanes. The flow control device is producing a strong vortex, which enhances the mixing between the main flow and the retarded boundary layer at the side wall. Thus, the corner separation is reduced on the vanes. The experiments were carried out at the peak efficiency (design point) of the cascade in order to optimize the design of the vortex generators for an application in turbomachines.

This content is only available via PDF.
You do not currently have access to this content.