The paper experimentally investigates the individual and combined effects of periodic unsteady wake flows and freestream turbulence intensity (FSTI) on flow separation along the suction surface of a low pressure turbine blade. The experiments were carried out at a Reynolds number of 110,000 based on the suction surface length and the cascade exit velocity. The experimental matrix includes freestream turbulence intensities of 1.9%, 3.0%, 8.0%, 13.0% and three different unsteady wake frequencies with the steady inlet flow as the reference configuration. Detailed boundary layer measurements are performed along the suction surface of a highly loaded turbine blade with a separation zone. Particular attention is paid to the aerodynamic behavior of the separation zone at different FSTIs at steady and periodic unsteady flow conditions. The objective of the research is (a) to quantify the effect of FSTIs on the dynamics of the separation bubble at steady inlet flow condition, and (b) to investigate the combined effects of FSTI and the unsteady wake flow on the behavior of the separation bubble. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University.
Skip Nav Destination
ASME Turbo Expo 2006: Power for Land, Sea, and Air
May 8–11, 2006
Barcelona, Spain
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4241-X
PROCEEDINGS PAPER
Effect of Turbulence Intensity and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-Attachment Over the Separation Bubble Along the Suction Surface of a Low Pressure Turbine Blade
B. O¨ztu¨rk,
B. O¨ztu¨rk
Texas A&M University, College Station, TX
Search for other works by this author on:
M. T. Schobeiri
M. T. Schobeiri
Texas A&M University, College Station, TX
Search for other works by this author on:
B. O¨ztu¨rk
Texas A&M University, College Station, TX
M. T. Schobeiri
Texas A&M University, College Station, TX
Paper No:
GT2006-91293, pp. 1911-1930; 20 pages
Published Online:
September 19, 2008
Citation
O¨ztu¨rk, B, & Schobeiri, MT. "Effect of Turbulence Intensity and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-Attachment Over the Separation Bubble Along the Suction Surface of a Low Pressure Turbine Blade." Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 6: Turbomachinery, Parts A and B. Barcelona, Spain. May 8–11, 2006. pp. 1911-1930. ASME. https://doi.org/10.1115/GT2006-91293
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
Combined Effects of Surface Trips and Unsteady Wakes on the Boundary Layer Development of an Ultra-High-Lift LP Turbine Blade
J. Turbomach (July,2005)
Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: Low-Speed Investigation
J. Turbomach (July,2006)
On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
J. Fluids Eng (May,2005)
Related Chapters
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Introduction
Design and Analysis of Centrifugal Compressors
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach