Optimization strategies have been used in recent years for the aerodynamic and mechanical design of turbomachine components. One crucial aspect in the use of such methodologies is the choice of the geometrical parameterization, which determines the complexity of the objective function to be optimized. In the present paper, an optimization strategy for the aerodynamic design of turbomachines is presented, where the blade parameterization is based on the use of a three-dimensional inverse design method. The blade geometry is described by means of aerodynamic parameters, like the blade loading, which are closely related to the aerodynamic performance to be optimized, thus leading to a simple shape of the optimization function. On the basis of this consideration, it is possible to use simple approximation functions for describing the correlations between the input design parameters and the performance ones. The Response Surface Methodology coupled with the Design of Experiments (DOE) technique was used for this purpose. CFD analyses were run to evaluate the configurations required by the DOE to generate the database. Optimization algorithms were then applied to the approximated functions in order to determine the optimal configuration or the set of optimal ones (Pareto front). The method was applied for the aerodynamic redesign of two different turbomachine components: a centrifugal compressor stage and a single-stage axial compressor. In both cases, both design and off-design operating conditions were analyzed and optimized.

This content is only available via PDF.
You do not currently have access to this content.