A blading design optimization system has been developed using an aeromechanical approach and harmonic perturbation method. The developed system has the capability to optimize aero-thermal performance with constraints of mechanical and aeromechanical integrity at the same time. ‘Aerodynamic mode shape’ is introduced to describe geometry deformation which can effectively reduce the number of design parameters while preserving surface smoothness. Compared to the existing design optimization practices, the present system is simpler, more accurate and effective. A redesign practice of the NASA rotor-67 at the peak efficiency point shows that the aero thermal efficiency can be improved by 0.4%, whilst the maximum static stress has been increased by 33%. Aeromechanical analysis of the optimized blade shows that the aerodynamic damping of the least stable first flap mode is still well above the critical value though the natural frequencies of the first 5 modes have been reduced by 1∼4%. The present finding highlights the need for more concurrent integrations of mechanics, aerodynamics and aeromechanics design optimization.

This content is only available via PDF.
You do not currently have access to this content.