The growing interest in wet gas compressors calls for accurate methods for performance prediction. Present evaluation methods for compressor and pump performance fail when evaluating the compression of gases containing liquid. Gas compression performance predictions given in ASME PTC-10-97 and ISO 5318 are based on the method John M. Schultz proposed in 1962. This method assumes a polytropic compression path and is based on averaged gas properties of inlet and outlet condition. The polytropic compression path is defined by keeping pvn constant, where n is constant along the compression path. When employing the Schultz method there is a challenge in defining the polytropic constant. This is seen in cases where dry gas compressors are exposed to wet components and compressor efficiency estimates exceed 100%. Today’s computer technology makes a direct integration of the polytropic head (∫vdp) possible where actual fluid properties along the compression path are included. Phase changes along the compression path are included with this method. This enables a detailed prediction to be made of the actual volumetric flow rate for the various compressor stages. This paper reports the implementation of the direct integration procedure for wet gas performance prediction. The procedure enables generic wet gas compression to be studied which forms the foundation for performance analysis with variations in operation at conditions and fluid components and properties.

This content is only available via PDF.
You do not currently have access to this content.