Exit surveys detailing total pressure loss, turning angle, and secondary velocities have been acquired for a fully loaded vane profile in a large scale low speed cascade facility. Exit surveys have been taken over a four-to-one range in Reynolds numbers based on exit conditions and for both a low turbulence condition and a high turbulence condition. The high turbulence condition was generated using a mock aero-derivative combustor. Exit loss, angle, and secondary velocity measurements were acquired in the facility using a five-hole cone probe at two stations representing axial chord spacings of 0.25 and 0.50. Substantial differences in the level of losses, distribution of losses, and secondary flow vectors are seen with the different turbulence conditions and at the different Reynolds numbers. The higher turbulence condition produces a significantly broader wake than the low turbulence case and shows a measurable total pressure loss in the region outside the wakes. Generally, total pressure losses are about 0.02 greater for the high turbulence case compared with the low turbulence case primarily due to the state of the suction surface boundary layers. Losses decrease moderately with increasing Reynolds number. Cascade inlet velocity distributions have been previously documented in an endwall heat transfer study of this same geometry. These exit survey measurements support our understanding of the endwall heat transfer distributions, the secondary flows in the passage, and the origin of losses.

This content is only available via PDF.
You do not currently have access to this content.