Computational simulation models are extensively used in the development, design and analysis of an aircraft engine and its components to represent the physics of an underlying phenomenon. The use of such a model-based simulation in engineering often necessitates the need to estimate model parameters based on physical experiments or field data. This class of problems, referred to as inverse problems [1] in the literature can be classified as well-posed or ill-posed dependent on the quality (uncertainty) and quantity (amount) of data that is available to the engineer. The development of a generic inverse modeling solver in a probabilistic design system [2] requires the ability to handle diverse characteristics in various models. These characteristics include (a) varying fidelity in model accuracy with simulation times from a couple of seconds to many hours (b) models being black-box with the engineer having access to only the input and output (c) non-linearity in the model (d) time-dependent model input and output. The paper demonstrates methods that have been implemented to handle these features with emphasis on applications in heat transfer and applied mechanics. A practical issue faced in the application of inverse modeling for parameter estimation is ill-posedness that is characterized by instability and non-uniqueness in the solution. Generic methods to deal with ill-posedness include (a) model development, (b) optimal experimental design and (c) regularization methods. The purpose of this paper is to communicate the development and implementation of an inverse method that provides a solution for both well-posed as well as ill-posed problems using regularization based on the prior values of the parameters. In the case of an ill-posed problem, the method provides two solution schemes — a most probable solution closest to the prior, based on the singular value decomposition (SVD) and a maximum a-posteriori probability solution (MAP). The inverse problem is solved as a finite dimensional non-linear optimization problem using the SVD and/or MAP techniques tailored to the specifics of the application. The paper concludes with numerical examples and applications demonstrating the scope as well as validating the developed method. Engineering applications include heat transfer coefficient estimation for disk quenching in process modeling, material model parameter estimation, sparse clearance data modeling, steady state and transient engine high-pressure compressor heat transfer estimation.
Skip Nav Destination
ASME Turbo Expo 2006: Power for Land, Sea, and Air
May 8–11, 2006
Barcelona, Spain
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4237-1
PROCEEDINGS PAPER
Inverse Modeling Techniques for Parameter Estimation in Engineering Simulation Models
Srikanth Akkaram,
Srikanth Akkaram
GE Global Research Center, Niskayuna, NY
Search for other works by this author on:
Harish Agarwal,
Harish Agarwal
GE Global Research Center, Niskayuna, NY
Search for other works by this author on:
Gene Wiggs
Gene Wiggs
GE Transportation, Cincinnati, OH
Search for other works by this author on:
Srikanth Akkaram
GE Global Research Center, Niskayuna, NY
Don Beeson
GE Transportation, Cincinnati, OH
Harish Agarwal
GE Global Research Center, Niskayuna, NY
Gene Wiggs
GE Transportation, Cincinnati, OH
Paper No:
GT2006-90058, pp. 63-72; 10 pages
Published Online:
September 19, 2008
Citation
Akkaram, S, Beeson, D, Agarwal, H, & Wiggs, G. "Inverse Modeling Techniques for Parameter Estimation in Engineering Simulation Models." Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 2: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation; Environmental and Regulatory Affairs. Barcelona, Spain. May 8–11, 2006. pp. 63-72. ASME. https://doi.org/10.1115/GT2006-90058
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Parameter Estimation in Modeling of Photovoltaic Panels Based on Datasheet Values
J. Sol. Energy Eng (May,2014)
Identification of Armax Models With Time Dependent Coefficients
J. Dyn. Sys., Meas., Control (September,2002)
Parameter Estimation Using a Combined Variable Structure and Kalman Filtering Approach
J. Dyn. Sys., Meas., Control (September,2008)
Related Chapters
A New Algorithm for Parameter Estimation of LFM Signal
International Conference on Information Technology and Computer Science, 3rd (ITCS 2011)
ML-DC Algorithm of Parameter Estimation for Gaussian Mixture Autoregressive Model
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
Conjugate Priors with Zero Occurrences: Analyst Beware! (PSAM-0435)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)