Several methods for predicting metal temperatures in a turbine engine are presented. Proper Orthogonal Decomposition (POD) is used to determine the system modes from temperature data sets from an engine mission. The coefficients of the system POD modes are used to identify the system dynamics. The linear state space model in conjunction with a multi-layer feedforward neural network is shown to produce superior prediction values for untrained temperature data when compared to those values produced by the state space model alone.

This content is only available via PDF.
You do not currently have access to this content.